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Overview: Sensing and Acting

• Bats use sonar to detect their prey

• Moths, a common prey for bats, can detect the 
bat’s sonar and attempt to flee

• Both organisms have complex sensory 
systems that facilitate survival

• These systems include diverse mechanisms 
that sense stimuli and generate appropriate 
movement



Fig. 50-1
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Concept 50.1: Sensory receptors transduce 
stimulus energy and transmit signals to the central 
nervous system

• All stimuli represent forms of energy

• Sensation involves converting energy into a 
change in the membrane potential of sensory 
receptors

• Sensations are action potentials that reach the 
brain via sensory neurons

• The brain interprets sensations, giving the 
perception of stimuli
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Sensory Pathways

• Functions of sensory pathways: sensory 
reception, transduction, transmission, and 
integration

• For example, stimulation of a stretch receptor 
in a crayfish is the first step in a sensory 
pathway



Fig. 50-2
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Sensory Reception and Transduction

• Sensations and perceptions begin with 
sensory reception, detection of stimuli by 
sensory receptors

• Sensory receptors can detect stimuli outside 
and inside the body
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• Sensory transduction is the conversion of 
stimulus energy into a change in the 
membrane potential of a sensory receptor

• This change in membrane potential is called a 
receptor potential

• Many sensory receptors are very sensitive: 
they are able to detect the smallest physical 
unit of stimulus

– For example, most light receptors can detect a 
photon of light
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Transmission

• After energy has been transduced into a 
receptor potential, some sensory cells generate 
the transmission of action potentials to the 
CNS

• Sensory cells without axons release 
neurotransmitters at synapses with sensory 
neurons

• Larger receptor potentials generate more rapid 
action potentials
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• Integration of sensory information begins 
when information is received

• Some receptor potentials are integrated 
through summation
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Perception

• Perceptions are the brain’s construction of 
stimuli

• Stimuli from different sensory receptors travel 
as action potentials along different neural 
pathways

• The brain distinguishes stimuli from different 
receptors by the area in the brain where the 
action potentials arrive
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Amplification and Adaptation

• Amplification is the strengthening of stimulus 
energy by cells in sensory pathways

• Sensory adaptation is a decrease in 
responsiveness to continued stimulation
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Types of Sensory Receptors

• Based on energy transduced, sensory 
receptors fall into five categories:

– Mechanoreceptors

– Chemoreceptors

– Electromagnetic receptors

– Thermoreceptors

– Pain receptors
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Mechanoreceptors

• Mechanoreceptors sense physical 
deformation caused by stimuli such as 
pressure, stretch, motion, and sound

• The sense of touch in mammals relies on 
mechanoreceptors that are dendrites of 
sensory neurons
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Chemoreceptors

• General chemoreceptors transmit information 
about the total solute concentration of a 
solution

• Specific chemoreceptors respond to individual 
kinds of molecules

• When a stimulus molecule binds to a 
chemoreceptor, the chemoreceptor becomes 
more or less permeable to ions 

• The antennae of the male silkworm moth have 
very sensitive specific chemoreceptors



Fig. 50-4
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Electromagnetic Receptors

• Electromagnetic receptors detect 
electromagnetic energy such as light, electricity, 
and magnetism

• Photoreceptors are electromagnetic receptors 
that detect light

• Some snakes have very sensitive infrared 
receptors that detect body heat of prey against 
a colder background



Fig. 50-5
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• Many mammals appear to use Earth’s 
magnetic field lines to orient themselves as 
they migrate



Fig. 50-5b

(b) Beluga whales



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Thermoreceptors

• Thermoreceptors, which respond to heat or 
cold, help regulate body temperature by 
signaling both surface and body core 
temperature
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Pain Receptors

• In humans, pain receptors, or nociceptors, 
are a class of naked dendrites in the epidermis

• They respond to excess heat, pressure, or 
chemicals released from damaged or inflamed 
tissues
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Concept 50.2: The mechanoreceptors responsible 
for hearing and equilibrium detect moving fluid or 
settling particles

• Hearing and perception of body equilibrium are 
related in most animals

• Settling particles or moving fluid are detected 
by mechanoreceptors 
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Sensing Gravity and Sound in Invertebrates

• Most invertebrates maintain equilibrium using 
sensory organs called statocysts

• Statocysts contain mechanoreceptors that 
detect the movement of granules called 
statoliths



Fig. 50-6
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• Many arthropods sense sounds with body hairs 
that vibrate or with localized “ears” consisting 
of a tympanic membrane and receptor cells



Fig. 50-7
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Hearing and Equilibrium in Mammals

• In most terrestrial vertebrates, sensory organs 
for hearing and equilibrium are closely 
associated in the ear



Fig. 50-8
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Fig. 50-8a
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Fig. 50-8b
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Hearing

• Vibrating objects create percussion waves in 
the air that cause the tympanic membrane to 
vibrate

• Hearing is the perception of sound in the brain 
from the vibration of air waves

• The three bones of the middle ear transmit the 
vibrations of moving air to the oval window on 
the cochlea
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• These vibrations create pressure waves in the 
fluid in the cochlea that travel through the 
vestibular canal

• Pressure waves in the canal cause the basilar 
membrane to vibrate, bending its hair cells

• This bending of hair cells depolarizes the 
membranes of mechanoreceptors and sends 
action potentials to the brain via the auditory 
nerve
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Fig. 50-9a
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Fig. 50-9b

More 
neuro- 
trans- 
mitter

(b) Bending of hairs in one direction

Receptor potential

M
em

br
an

e
po

te
nt

ia
l (

m
V)

0

–70

Time (sec)

Si
gn

al

–70

–50

0 1 2 3 4 5 6 7



Fig. 50-9c
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• The fluid waves dissipate when they strike the 
round window at the end of the tympanic 
canal
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Fig. 50-10a

Axons of 
sensory neurons

Vibration

Basilar membrane

Apex

Oval 
window Vestibular 

canal

Stapes

Base
Round 
window

Tympanic 
canal Fluid 

(perilymph)



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

• The ear conveys information about:

– Volume, the amplitude of the sound wave

– Pitch, the frequency of the sound wave

• The cochlea can distinguish pitch because the 
basilar membrane is not uniform along its 
length

• Each region vibrates most vigorously at a 
particular frequency and leads to excitation of a 
specific auditory area of the cerebral cortex



Fig. 50-10b
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Equilibrium

• Several organs of the inner ear detect body 
position and balance:  

– The utricle and saccule contain granules 
called otoliths that allow us to detect gravity 
and linear movement

– Three semicircular canals contain fluid and 
allow us to detect angular acceleration such as 
the turning of the head



Fig. 50-11
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Hearing and Equilibrium in Other Vertebrates

• Unlike mammals, fishes have only a pair of 
inner ears near the brain

• Most fishes and aquatic amphibians also have 
a lateral line system along both sides of their 
body

• The lateral line system contains 
mechanoreceptors with hair cells that detect 
and respond to water movement



Fig. 50-12
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Concept 50.3: The senses of taste and smell rely on 
similar sets of sensory receptors

• In terrestrial animals:

– Gustation (taste) is dependent on the 
detection of chemicals called tastants

– Olfaction (smell) is dependent on the 
detection of odorant molecules

• In aquatic animals there is no distinction 
between taste and smell

• Taste receptors of insects are in sensory hairs 
called sensilla, located on feet and in mouth 
parts
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Taste in Mammals

• In humans, receptor cells for taste are modified 
epithelial cells organized into taste buds

• There are five taste perceptions: sweet, sour, 
salty, bitter, and umami (elicited by glutamate)

• Each type of taste can be detected in any 
region of the tongue



Fig. 50-13
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• When a taste receptor is stimulated, the signal 
is transduced to a sensory neuron

• Each taste cell has only one type of receptor



Fig. 50-14
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Smell in Humans

• Olfactory receptor cells are neurons that line 
the upper portion of the nasal cavity

• Binding of odorant molecules to receptors 
triggers a signal transduction pathway, sending 
action potentials to the brain



Fig. 50-15
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Concept 50.4: Similar mechanisms underlie vision 
throughout the animal kingdom

• Many types of light detectors have evolved in 
the animal kingdom
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Vision in Invertebrates

• Most invertebrates have a light-detecting organ

• One of the simplest is the eye cup of 
planarians, which provides information about 
light intensity and direction but does not form 
images
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• Two major types of image-forming eyes have 
evolved in invertebrates: the compound eye 
and the single-lens eye

• Compound eyes are found in insects and 
crustaceans and consist of up to several 
thousand light detectors called ommatidia

• Compound eyes are very effective at detecting 
movement
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• Single-lens eyes are found in some jellies, 
polychaetes, spiders, and many molluscs

• They work on a camera-like principle: the iris 
changes the diameter of the pupil to control 
how much light enters
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The Vertebrate Visual System

• In vertebrates the eye detects color and light, 
but the brain assembles the information and 
perceives the image
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Structure of the Eye

• Main parts of the vertebrate eye:

– The sclera: white outer layer, including cornea

– The choroid: pigmented layer

– The iris: regulates the size of the pupil

– The retina: contains photoreceptors

– The lens: focuses light on the retina

– The optic disk: a blind spot in the retina where 
the optic nerve attaches to the eye
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• The eye is divided into two cavities separated 
by the lens and ciliary body:

– The anterior cavity is filled with watery 
aqueous humor

– The posterior cavity is filled with jellylike 
vitreous humor

• The ciliary body produces the aqueous humor
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• Humans and other mammals focus light by 
changing the shape of the lens

Animation: Near and Distance VisionAnimation: Near and Distance Vision
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• The human retina contains two types of 
photoreceptors: rods and cones

• Rods are light-sensitive but don’t distinguish 
colors

• Cones distinguish colors but are not as 
sensitive to light

• In humans, cones are concentrated in the 
fovea, the center of the visual field, and rods 
are more concentrated around the periphery of 
the retina
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Sensory Transduction in the Eye

• Each rod or cone contains visual pigments 
consisting of a light-absorbing molecule called 
retinal bonded to a protein called an opsin

• Rods contain the pigment rhodopsin (retinal 
combined with a specific opsin), which changes 
shape when absorbing light
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• Once light activates rhodopsin, cyclic GMP 
breaks down, and Na+ channels close

• This hyperpolarizes the cell
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• In humans, three pigments called photopsins 
detect light of different wave lengths: red, 
green, or blue
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Processing of Visual Information

• Processing of visual information begins in the 
retina

• Absorption of light by retinal triggers a signal 
transduction pathway



Fig. 50-22

Light Responses

Rod depolarized

Rhodopsin inactive Rhodopsin active

Dark Responses

Na+ channels open Na+ channels closed

Glutamate 
released

Bipolar cell either 
depolarized or 
hyperpolarized

Rod hyperpolarized

No glutamate 
released

Bipolar cell either 
hyperpolarized or 
depolarized



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

• In the dark, rods and cones release the 
neurotransmitter glutamate into synapses with 
neurons called bipolar cells

• Bipolar cells are either hyperpolarized or 
depolarized in response to glutamate

• In the light, rods and cones hyperpolarize, 
shutting off release of glutamate

• The bipolar cells are then either depolarized or 
hyperpolarized
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• Three other types of neurons contribute to 
information processing in the retina

– Ganglion cells transmit signals from bipolar 
cells to the brain; these signals travel along 
the optic nerves, which are made of ganglion 
cell axons

– Horizontal cells and amacrine cells help 
integrate visual information before it is sent to 
the brain

• Interaction among different cells results in 
lateral inhibition, a greater contrast in image
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• The optic nerves meet at the optic chiasm 
near the cerebral cortex

• Here, axons from the left visual field (from both 
the left and right eye) converge and travel to 
the right side of the brain

• Likewise, axons from the right visual field travel 
to the left side of the brain
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• Most ganglion cell axons lead to the lateral 
geniculate nuclei

• The lateral geniculate nuclei relay information 
to the primary visual cortex in the cerebrum

• Several integrating centers in the cerebral 
cortex are active in creating visual perceptions



Fig. 50-24

Right 
visual 
field

Right 
eye

Left 
visual 
field

Left 
eye

Optic 
chiasm

Primary 
visual cortexLateral 

geniculate 
nucleus

Optic nerve



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Evolution of Visual Perception

• Photoreceptors in diverse animals likely 
originated in the earliest bilateral animals

• Melanopsin, a pigment in ganglion cells, may 
play a role in circadian rhythms in humans 
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Concept 50.5: The physical interaction of protein 
filaments is required for muscle function

• Muscle activity is a response to input from the 
nervous system

• The action of a muscle is always to contract
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Vertebrate Skeletal Muscle

• Vertebrate skeletal muscle is characterized by 
a hierarchy of smaller and smaller units

• A skeletal muscle consists of a bundle of long 
fibers, each a single cell, running parallel to the 
length of the muscle

• Each muscle fiber is itself a bundle of smaller 
myofibrils arranged longitudinally
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• The myofibrils are composed to two kinds of 
myofilaments:

– Thin filaments consist of two strands of actin 
and one strand of regulatory protein

– Thick filaments are staggered arrays of 
myosin molecules
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• Skeletal muscle is also called striated muscle 
because the regular arrangement of 
myofilaments creates a pattern of light and 
dark bands

• The functional unit of a muscle is called a 
sarcomere, and is bordered by Z lines
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Fig. 50-25a
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Fig. 50-25b
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The Sliding-Filament Model of Muscle Contraction

• According to the sliding-filament model, 
filaments slide past each other longitudinally, 
producing more overlap between thin and thick 
filaments



Fig. 50-26
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• The sliding of filaments is based on interaction 
between actin of the thin filaments and myosin 
of the thick filaments

• The “head” of a myosin molecule binds to an 
actin filament, forming a cross-bridge and 
pulling the thin filament toward the center of the 
sarcomere

• Glycolysis and aerobic respiration generate the 
ATP needed to sustain muscle contraction
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Fig. 50-27-2
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Fig. 50-27-3
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Fig. 50-27-4
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The Role of Calcium and Regulatory Proteins

• A skeletal muscle fiber contracts only when 
stimulated by a motor neuron

• When a muscle is at rest, myosin-binding sites 
on the thin filament are blocked by the 
regulatory protein tropomyosin
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• For a muscle fiber to contract, myosin-binding 
sites must be uncovered

• This occurs when calcium ions (Ca2+) bind to a 
set of regulatory proteins, the troponin 
complex

• Muscle fiber contracts when the concentration 
of Ca2+ is high; muscle fiber contraction stops 
when the concentration of Ca2+ is low



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

• The stimulus leading to contraction of a muscle 
fiber is an action potential in a motor neuron 
that makes a synapse with the muscle fiber
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• The synaptic terminal of the motor neuron 
releases the neurotransmitter acetylcholine

• Acetylcholine depolarizes the muscle, causing 
it to produce an action potential
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• Action potentials travel to the interior of the 
muscle fiber along transverse (T) tubules

• The action potential along T tubules causes the 
sarcoplasmic reticulum (SR) to release Ca2+

• The Ca2+ binds to the troponin complex on the 
thin filaments

• This binding exposes myosin-binding sites and 
allows the cross-bridge cycle to proceed
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• Amyotrophic lateral sclerosis (ALS), formerly 
called Lou Gehrig’s disease, interferes with the 
excitation of skeletal muscle fibers; this disease 
is usually fatal

• Myasthenia gravis is an autoimmune disease 
that attacks acetylcholine receptors on muscle 
fibers; treatments exist for this disease
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Nervous Control of Muscle Tension

• Contraction of a whole muscle is graded, which 
means that the extent and strength of its 
contraction can be voluntarily altered

• There are two basic mechanisms by which the 
nervous system produces graded contractions:

– Varying the number of fibers that contract

– Varying the rate at which fibers are stimulated
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• In a vertebrate skeletal muscle, each branched 
muscle fiber is innervated by one motor neuron

• Each motor neuron may synapse with multiple 
muscle fibers

• A motor unit consists of a single motor neuron 
and all the muscle fibers it controls
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• Recruitment of multiple motor neurons results 
in stronger contractions

• A twitch results from a single action potential in 
a motor neuron

• More rapidly delivered action potentials 
produce a graded contraction by summation
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• Tetanus is a state of smooth and sustained 
contraction produced when motor neurons 
deliver a volley of action potentials
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Types of Skeletal Muscle Fibers

• Skeletal muscle fibers can be classified

– As oxidative or glycolytic fibers, by the source 
of ATP

– As fast-twitch or slow-twitch fibers, by the 
speed of muscle contraction
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Oxidative and Glycolytic Fibers

• Oxidative fibers rely on aerobic respiration to 
generate ATP

• These fibers have many mitochondria, a rich 
blood supply, and much myoglobin

• Myoglobin is a protein that binds oxygen more 
tightly than hemoglobin does
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• Glycolytic fibers use glycolysis as their primary 
source of ATP

• Glycolytic fibers have less myoglobin than 
oxidative fibers, and tire more easily

• In poultry and fish, light meat is composed of 
glycolytic fibers, while dark meat is composed 
of oxidative fibers
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Fast-Twitch and Slow-Twitch Fibers

• Slow-twitch fibers contract more slowly, but 
sustain longer contractions

• All slow twitch fibers are oxidative

• Fast-twitch fibers contract more rapidly, but 
sustain shorter contractions

• Fast-twitch fibers can be either glycolytic or 
oxidative
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• Most skeletal muscles contain both slow-twitch 
and fast-twitch muscles in varying ratios
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Other Types of Muscle

• In addition to skeletal muscle, vertebrates have 
cardiac muscle and smooth muscle

• Cardiac muscle, found only in the heart, 
consists of striated cells electrically connected 
by intercalated disks

• Cardiac muscle can generate action potentials 
without neural input
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• In smooth muscle, found mainly in walls of 
hollow organs, contractions are relatively slow 
and may be initiated by the muscles 
themselves

• Contractions may also be caused by 
stimulation from neurons in the autonomic 
nervous system
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Concept 50.6: Skeletal systems transform muscle 
contraction into locomotion

• Skeletal muscles are attached in antagonistic 
pairs, with each member of the pair working 
against the other 

• The skeleton provides a rigid structure to which 
muscles attach

• Skeletons function in support, protection, and 
movement
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Types of Skeletal Systems

• The three main types of skeletons are: 

– Hydrostatic skeletons (lack hard parts)

– Exoskeletons (external hard parts)

– Endoskeletons (internal hard parts)
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Hydrostatic Skeletons

• A hydrostatic skeleton consists of fluid held 
under pressure in a closed body compartment

• This is the main type of skeleton in most 
cnidarians, flatworms, nematodes, and 
annelids

• Annelids use their hydrostatic skeleton for 
peristalsis, a type of movement on land 
produced by rhythmic waves of muscle 
contractions
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Exoskeletons

• An exoskeleton is a hard encasement 
deposited on the surface of an animal

• Exoskeletons are found in most molluscs and 
arthropods

• Arthropod exoskeletons are made of cuticle 
and can be both strong and flexible

• The polysaccharide chitin is often found in 
arthropod cuticle
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Endoskeletons

• An endoskeleton consists of hard supporting 
elements, such as bones, buried in soft tissue 

• Endoskeletons are found in sponges, 
echinoderms, and chordates

• A mammalian skeleton has more than 200 
bones

• Some bones are fused; others are connected 
at joints by ligaments that allow freedom of 
movement
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Size and Scale of Skeletons

• An animal’s body structure must support its 
size

• The size of an animal’s body scales with 
volume (a function of n3), while the support for 
that body scales with cross-sectional area of 
the legs (a function of n2)

• As objects get larger, size (n3) increases faster 
than cross-sectional area (n2); this is the 
principle of scaling
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• The skeletons of small and large animals have 
different proportions because of the principle of 
scaling

• In mammals and birds, the position of legs 
relative to the body is very important in 
determining how much weight the legs can 
bear
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Types of Locomotion

• Most animals are capable of locomotion, or 
active travel from place to place

• In locomotion, energy is expended to overcome 
friction and gravity
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Swimming

• In water, friction is a bigger problem than 
gravity

• Fast swimmers usually have a streamlined 
shape to minimize friction

• Animals swim in diverse ways

– Paddling with their legs as oars

– Jet propulsion

– Undulating their body and tail from side to side, 
or up and down
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Locomotion on Land

• Walking, running, hopping, or crawling on land 
requires an animal to support itself and move 
against gravity

• Diverse adaptations for locomotion on land 
have evolved in vertebrates



Fig. 50-35
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Flying

• Flight requires that wings develop enough lift to 
overcome the downward force of gravity

• Many flying animals have adaptations that 
reduce body mass

– For example, birds lack teeth and a urinary 
bladder
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Energy Costs of Locomotion

• The energy cost of locomotion

– Depends on the mode of locomotion and the 
environment

– Can be estimated by the rate of oxygen 
consumption or carbon dioxide production



Fig. 50-36
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• Animals specialized for swimming expend less 
energy per meter traveled than equivalently 
sized animals specialized for flying or running
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You should now be able to:

1. Distinguish between the following pairs of 
terms: sensation and perception; sensory 
transduction and receptor potential; tastants 
and odorants; rod and cone cells; oxidative 
and glycolytic muscle fibers; slow-twitch and 
fast-twitch muscle fibers; endoskeleton and 
exoskeleton

2. List the five categories of sensory receptors 
and explain the energy transduced by each 
type
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3. Explain the role of mechanoreceptors in 
hearing and balance

4. Give the function of each structure using a 
diagram of the human ear

5. Explain the basis of the sensory discrimination 
of human smell

6. Identify and give the function of each structure 
using a diagram of the vertebrate eye
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7. Identify the components of a skeletal muscle 
cell using a diagram

8. Explain the sliding-filament model of muscle 
contraction

9. Explain how a skeleton combines with an 
antagonistic muscle arrangement to provide a 
mechanism for movement
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